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For describing magnetically confined toroldal plasmas. it is convenient m some instances to 
use a cylindrical coordinate system whose origin IS on the major axis of the torus and m 
others to use a “flux coordinate” system bound to the magnetic flux which IS embedded m the 
plasma. A good estimate of the flux surface geometry is available m spectral form m many 
cases, permitting a simple transformation from flux coordmates to cylindrical coordinates. A 
modified Newton iteration IS described for performmg the “inverse” transformation from 
cylindrical coordinates to flux coordinates. An accurate techmque for radial spline inter- 
polation of the spectral coefficients is given which is particularly useful for computing 
magnetic fields near the magnetic axis. Given a spectral representation of the plasma it is 
possible to track a chord through the plasma, determining in sequence its intersections with a 
given set of flux surfaces. This techmque is the starting point for many calculations including 
neutral beam heating, pellet fueling, evaluation of absorption or plasma sources along the 
lines-of-sight of detectors, etc. An efficient algorithm for performing this calculation is given. 
These algorithms permit the determination of plasma “profiles” from chordal data by a 
straightforward least-squares technique, without any restrictions on the orientation of the 
chords. The method shown is contrasted to those based on generalized Abel transforms. 
cc> 1987 Academic Press. Inc 

1. INTRODUCTION 

Let (R, qST 2) be a cylindrical coordinate system whose origin is on the major axis 
of a magnetically confined toroidal plasma. (R is the major radius, I# is the toroidal 
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angle, and 2 is the distance above the midplane.) To relate flux surface quantities 
such as plasma density, temperature, etc., to cylindrical coordinates, we must also 
have another coordinate system, one that is embedded in the plasma. For con- 
venience, we define the “flux coordinates” Cl-41 (p, 8, c) as follows: 0 is a poloidal 
coordinate, [ is a toroidal coordinate, and p is a radial coordinate labeling a flux 
surface defined by B . Vp = 0, where B is the magnetic field. Let 

WP, @,i) = 11 Rn,(P) cos(m@ - 4, 

M n 

Zb, 60 = C C Z,,(P) sinbe - 41, 

m n 

Equations (la) and (lb) are appropriate for plasmas that have vertical symmetry in 
at least two toroidal planes per field period (stellarator symmetry). This restriction, 
as well as the restriction that c = 4, could be relaxed by extending the following 
analysis in a straightforward way. 

In Section 2, we describe an iterative technique for the “inverse” transformation 
from (R, 4, Z) to (p, 8, [). We have chosen [ = 4 for computational convenience. 
Particular definitions of p and 8, which relate the flux coordinates to the magnetic 
field, are given in Sections 2 and 3, respectively. 

The coefficients of the transformation (sometimes called “spectral coefficients”) 
are generally given at a discrete set of p values by a magnetohydrodynamic 
equilibrium code or by a vacuum field line following algorithm. Splines can be used 
to interpolate the data in the p direction; special care is needed, however, in inter- 
polating the data near the magnetic axis, particularly when computing the magnetic 
field. We show a way to reduce interpolation errors near the magnetic axis. In some 
cases, such as tracing rays that leave and reenter the plasma, extending the transfor- 
mation beyond the plasma is useful. Because simple extrapolation of the splines 
works very poorly, a more robust (but still arbitrary) continuation of the transfor- 
mation is given in Section 2. Section 3 lists the equations for the magnetic field in 
terms of the parameters chosen here and shows an example of errors in the field due 
to an inferior spline lit. 

In Section 4 an efficient algorithm is described for finding, in sequence, the inter- 
sections of a straight trajectory with a set of nested flux surfaces. This algorithm 
builds on the techniques of Section 2 and forms the starting point for Section 5, 
which shows how plasma profiles may be determined from chordal data when the 
spectral coefficients are known. 
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2. THE “INVERSE” TRANSFORMATION 

Given R, Z, and 4, we wish to compute the values of p and 8. Taylor-expanding 
R and Z about the approximate solution (pk, 19~) yields 

R(p, L~)=R~+R;(O-Q~)+R;(~-~~)+ . . . . vat 

Z(p,e)=Zk+z#M3k)+z~(p-pp”)+ . ..) m31 

where subscripts denote derivatives and where Rk and Zk are the values obtaine 
by evaluating Eqs. (la) and (lb) at pk and Ok. Neglecting terms involving secon 
and higher derivatives, we can solve Eqs. (2a) and (2b) simultaneously for p an 
at the (k + 1 )th iteration. The solution is 

t)“+‘++z$(R-Rk)-RkpfZ-zk) - 
Zk ’ 

P k+Lpk+ R;(Z - Z”) - Z;(R - Rk) 

Tk ' 
Fb) 

where 

r=R,Z,-R,Ze 

is the Jacobian of the transformation from (R, Z) to (p, 0). Note that derivatives 
with respect to 6 and 5 are available trivially from Eqs. (la) and (lb), but 
derivatives with respect to p must typically be derived from spline fits of the R,,(p) 
and Z,,(p). This algorithm typically converges in two to six iterations with the 
error 1 Rk - R i/R decreasing by about an order of magnitude per iteration. A poor 
initial guess costs only a couple of iterations in most cases. Convergence is sai 
be achieved when ( Rk - R)2 + (Zk - Z)2 < aI, where s1 is a small distance. 

In pathological cases the (k + l)th iteration may give a worse result than the kt 
iteration. In that case the step size is halved, and an estimated mean value is used 
for the Jacobian as follows: 

gk+2++1z;(R-Rk)-R;(z-zk) - 
2 0.75~~+0.25~~+" ' 

P 
1 R;(Z-Zk)-.Zi(R- Rk) 

k+2=pk+Z 0.75~~ + 0.25~~~' 

If necessary, the reduced step can be reduced again in a similar fashion. We 
not observed any cases that fail to converge when treated in this way. Of course the 
problem could also be solved by using a library routine to find the zero of 
function such as F(pk, 0”) = (R- Rk)2 + (Z- Zk)2. This is appropriate if a co 
must be constructed quickly. However, for production work the method presented 
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here is fast, robust, and straightforward. It has no unnecessary overhead and 
requires no adjustments to achieve optimal convergence. 

Regardless of the iterative procedure used, special care is needed near the 
magnetic axis. To be specific, we must pick a definition of p. We let 

P = w@,)“2, (6) 

where @ is the toroidal magnetic flux contained within a flux surface and @, is the 
value of Q, at the plasma boundary. Then z approaches zero at the magnetic axis 
and the transformation is undefined. If pk = 0 but (Rk, Zk) # (R, Z), then we set 
pk=pmin in order to proceed. Typically, Pmin is taken as ten times machine 
precision. 

A related problem is that the quantities Z, and R, must be determined very 
accurately in the region where p is small to ensure a nonzero value for z. It can be 
shown [l] that the R,,(p) and Z,,(p) are proportional to pn? as p approaches 
zero. To interpolate the data accurately, we factor out the dependence on pm prior 
to performing the spline fit in p. We let 

R(P, 6 0 = c 2 P”&,(P) Mm& -nil 
m n 

and 

Z(p, R5) = C C P”-ZAP) sinbe - ntlh 

where the quantities R,,(p) and p,,(p) are the fitted functions. This form is par- 
ticularly useful if the data are rather sparse near the axis. We will return to this 
point in the next section. Note that if data is not available at p = 0, a reasonable 
extrapolation from neighboring data points may be made using the p” behavior. 

In many practical applications, extending the transformation given by Eqs. (la) 
and (lb) beyond the plasma is useful, even though the identification of p with 
magnetic flux surfaces may be meaningless for p > 1. A simple extension which gives 
a unique mapping for plasma boundaries which are not too severely concave is 
obtained as follows: let R,, and Zi, be proportional to p, and all other coefficients 
be constant for p > 1. This causes the flux surfaces to approach ellipses as p -+ co. 
Note that a discontinuity in z occurs at p = 1 using this algorithm. Equations (5a) 
and (5b) are very effective in dealing with a discontinuity in r. Other treatments are 
possible. In particular, r could be made continuous by causing the R,, and Z,, to 
be smooth functions of p. However, for applications such as tracking a chord to 
determine its intersections with a plasma (see Section 4), the computation of the 
additional spectral coefficients for p > 1 would slow down the calculation without 
increasing the accuracy. 
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3. MAGNETIC FIELD CALCULATION 

The magnetic field associated with the flux coordinates (p, 0, [) can be written as 
[I% 61 

where @ is the toroidal magnetic flux, c= ‘P/Q’, Y is the poloidal magnetic 
primes denote derivatives with respect to p, and 6” is the poloidal angle that makes 
the field lines “straight.” To reduce the number of modes required to describe the 
transformation, we introduce the parameter 2, which satisfies 

e* = 8 + I(& 8, i), 691 

where .A may be represented as 

and the coefficients of the expansion are determined along with those for R and Z 
by a steepest descent method [l]. The following discussion may of course be 
applied to straight field line coordinates by setting i, = X0 = ;lr = 0. Equation (IO) is 
appropriate for plasmas that have stellarator symmetry. 

It can be shown that 

where e, = ax/a0 and eg = ax/al are covariant basis vectors. Given values for p and 
B and assuming that o0 and I (p) are known, we can solve for the magnetic field 
components using Eqs. (la), (lb), (4), (6), (lo), and ( 11). For convenience we fist 
expressions for the cylindrical components of B. 

B”= & [(c- l(+)R, + l(1 + &)R,] 

BZ= 

Note that @’ and T both approach zero as p + zero, so accurate determination of ? 
near the magnetic axis is critical in order to get sensible values for B. Small errors 
in the R,, and Z,, data can cause large errors in the resulting B values near t 
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FIG. 1. Factoring out p” prior to spline fitting the spectral coefficients improves the calculated value 

of the magnetic field near p = 0. 

axis, and thus careful determination of the equilibrium is required if the magnetic 
field is to be reconstructed in this way. Figure 1 shows the importance of factoring 
out the pm dependence prior to spline fitting the Fourier coefficients. For a typical 
tokamak geometry the flux surface quantity RB,,, (major radius times toroidal 
magnetic field) is plotted versus p near the magnetic axis. The solid line results from 
spline fitting the R,,, Z,,, and A,, coefficients. The dashed line corresponds to fac- 
toring out pm prior to the spline fits. The open circles label RB,,, values 
corresponding to the knots of the splines. (In addition there is a knot at p = 0, 
where the expression for Bto, is indeterminate.) 

The magnetic field calculation described here has been used in numerical 
calculation of stellarator transport coefficients from the linearized drift 

ORNL-DWG 86-2557 FED 
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FIG. 2. Mod(B) contours. 
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Fokker-Planck equation, using equilibria generated by the 3D MI-ID equilibrium 
codes MOMCON and VMEC [9, lo]. Figure 2 shows mod(B) contours for the 
4=n/4 plane of the Advanced Toroidal Facility (ATF). The data for R,,(p), 
Z,,(p), L,,(p), and a(p) were available on a 31-point grid, uniformly spaced in p. 
An arbitrary set of flux surfaces (uniformly spaced in p) is shown by the dashed 
curves. 

4. TRACKING A CHORD 

Suppose that we wish to find all the intersections of a straight trajectory with a 
given set of flux surfaces. Furthermore, they should be in the order that they would 
be encountered when traveling along the trajectory. This is useful for such 
applications as neutral beam heating of plasmas. The fundamental technique is to 
take a step along the trajectory in such a way as to cross one and only one flux sur- 
face. Then the intersection with that flux surface corresponds to the zero of the 
function p(S) -pI on the interval (Sk, S”+l), where S is the path length along the 
trajectory, p, is the p value of the flux surface crossed, Sk is the start of the step, and 
Sk’ l is the end of the step. 

It may be shown that the variation of p along the trajectory satisfies 

where S is path length along the trajectory and (X= ,R cos 4, Y = R sin 4, Z) are 
Cartesian coordinates. Since the trajectory is straight in real space, the quantities 
8X/&S, aY/&S, and a.Z/&S are constants along the trajectory. The remaining 
derivatives depend on the local Sacobian, i.e., 

ap 1 amz aRaz -=- ----_ 
84 ( 5 ad do a0 ad i 
ap 1 aR 
az=z ae. ( > 

Suppose that the plasma is divided into nested volume elements whose boun- 
daries pi are flux surfaces, where 0 < pi < 1. In addition, a dummy volume element 
1 <PQPmax is defined to permit treatment of trajectories which lie outside of the 
plasma. At any point Sk on the trajectory one may determine pk z p(Sk) and fin 
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which volume element Sk lies in. Suppose that the surface pi forms one of the boun- 
daries of the current volume element. Then the path length to pi is approximately 

AS; = (pi - pk)/p’(Sk). (19) 

Let pI be the surface which makes AS: > 0; then we attempt to span the intersection 
with pI by taking a step ASk = 1.1 AS:. Several tests are then performed to see 
whether one and only one surface has been spanned. 

If P k+ 1 = p(Sk + Ask) does not lie in the same volume element or an adjacent 
element, the step size is halved. However, the step size is required to be at least Ed, 
where the choice of sS is discussed later. 

If ASk > L,,, or ASk > S,,, the step is truncated, where S,,, is the length of the 
trajectory and L,,, is chosen so that p’(S) changes sign no more than once per 
step. Normally L,,, can be set equal to the minor radius, but in highly rippled 
plasmas it should be set less than the ripple spacing. Note that a change of sign in 
p’(S) indicates that the trajectory is tangent to some surface pT, which may or may 
not coincide with one of the pI. 

If p’(Sk+i) has the opposite sign of p’(Sk), then we find the zero of the function 
p’(S) on the interval (Sk, Sk+ ‘) using the ZEROIN routine in a form similar to 
that presented by Forsythe et al. [ll]. The step is shortened to fall at the solution 
point ST, avoiding the possibility of missing a tangency point or a closely spaced 
pair of intersections when pT % pi. 

ORNL-DWG 86-2556 FED 
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FIG. 3. Intersections of a straight line lying in a #=constant plane with a set of flux surfaces. 
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FIG. 4. Cos c1 vs path length along the trajectory 

If p’(S) does not change sign but the step falls short of the surface pl, then we set 
Sk = Sk+’ and recompute AS:. 

If none of the above conditions are met, then the step spans one and only one 
surface and we find the intersection p(S) - p, = 0 on the interval (Sk, Sk+ ’ ) using 
ZEROIN. 

The ZEROIN procedure is required to converge within some tolerance dS < E=. 
After an intersection or a zero of p’(S) has been found at some point Sz we check 
the sign of p’(Sz + sS) in order to find which surface the trajectory will approach 
next, and the procedure is repeated. The minimum step sS is necessary after an 
intersection in order to prevent finding the same intersection again when S, > S, 3 
Si - sZ, where Si is the exact position of the intersection. It is critical to maintain 
the relation sS > sZ > sI among the minimum step size, the ZEROIN tolerance, a 
the inverse transformation tolerance, respectively. A reasonable choice 
&S = 2&z = 200&J = L,,, /lOO. (Note that p(S) and p’(S) must be obtained using a 
sequence of transformations (X(S), Y(S), Z(S)) -+ (R(S), Z(S), b(S)) 3 (p(S), 
0(S), 4(S)), where the last transformation is the inverse transformation described in 
Section 2). 

Figure 3 shows the intersections of a set of nested flux surfaces with a trajectory 
in the 4 = 7c/4 plane of the ATF. The dotted lines are surfaces of constant 8. This 
case took less than 0.005s of execution time per intersection on the GRAY-I for an 
equilibrium described by nine spectral modes. (See Eqs. (la) and (lb).) T 
typical for any trajectory (including trajectories that do not lie in a 4 = constant 
plane), with execution time being roughly proportional to the number of modes. 
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FIG. 5. Trajectory intersecting Heliac plasma multiple times (perspective view). The arrows show 
those parts of the trajectory which lie outside the plasma. The second arrow lies on the opposite side of 
the plasma from the viewer. 
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FIG. 6. Trajectory intersecting Hehac plasma multiple times (top view). The small circles indicate the 
ends of the trajectory and the intersections of the trajectory with a set of nested flux surfaces (not 
shown). 
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FIG. 7. Cos a vs path length along the trajectory 

In the modeling of neutral beam injection, it is useful to know the value of OL, the 
angle between the particle trajectory and the magnetic field. Note that 

L.B 
cosa=m> 

where L is a path-length vector along the trajectory. This expression is most easily 
evaluated by converting the cylindrical components of B (Eqs. (12)-(14)) t 
corresponding Cartesian components. Figure 4 shows cos o( as a function of 
length for the trajectory in Fig. 3. 

To illustrate the power of this technique, we consider a trajectory that intersects 
a heliac plasma several times. Figure 5 shows a perspective view. It is ~~lpf~~ to 
compare it with Fig. 6, which shows a top view of the trajectory with the outline of 
the plasma and the magnetic axis. Figure 7 shows cos M as a function of path Ben 
for this trajectory. Note that cos CI is not computed for those portions of the trajec- 
tory which lie outside of the plasma, since our data come from a ~xed~bo~~dary 
equilibrium code which does not model the magnetic field for p > 1~ 

5. CHORDAL DATA INVERSION 

In a magnetically confined toroidal plasma, quantities such as density and tem- 
perature are nearly constant on a flux surface. Plots of these quantities as a function 
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of p are called “profiles.” A problem frequently encountered in experimental plasma 
physics is that of finding a plasma profile given measurements of absorption or 
source strength along a set of chords which are the lines of sight of an array of 
detectors. The measured values may be expressed as line integrals of some quantity 
which is constant on a flux surface. If the spectral coefficients in Eq. (la) and (lb) 
are known, the profiles may be determined by a straightforward least-squares 
method. Note that this is not the same as “Abel inversion” or the more general 
tomographic analysis of Granetz and Camacho [7], which do not assume any 
knowledge of flux surface shapes and which require the chords to lie in a plane at 
one toroidal position. 

For example, suppose we want to know the bremsstrahlung source strength as a 
function of p. The experimental data are a set of photon counting rates from an 
array of collimated detectors. If Sk is the signal from the kth detector, then 

where fk is a constant for the kth detector which includes the counting efficiency, L, 
is path length along the kth chord, and s(p) is the source strength in photons/cubic 
meter. 

Assume that the source strength has the form 

where the A, are constants and the s,(p) are a set of linearly independent functions 
that can be chosen to suit the purpose, e.g., polynomials such as s1 = 1, s2 = p, and 
83 = P2, or typical source profile shapes such as si = (1 - p’) and s2 = (1 - p2)‘. 
Substituting Eq. (22) into Eq. (21) gives 

Sk = fk C-V,,, 
j 

(23) 

where 

Gjc = s,(p) d&c. s (24) 

Dividing the plasma into a set of nested volume elements whose boundaries are flux 
surfaces, 

where i is summed over all volume elements; sii is the mean value of s,(p) in the ith 
volume element; and AL, is the total path length of the kth chord in the ith 
volume element. The values ALik are obtained by finding the intersections of the 
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kth chord with the set of flux surfaces as discussed in Section 4 and then simply 
computing the distance between intersections. For example, for three char 
two source terms we can write the set of equations from Eq. (23) as 

which can be solved in a least-squares sense for the A,. Other treatments are 
possible. However, in all cases the starting point for the calculation is the deter- 
mination of the intersections of the chords with a set of nested flux surfaces. 

The method described here was used to study the evolution of the plasma density 
profile in Doublet III [IS], although the reference mistakenly refers to the results as 
“Abel-inverted.” The density profile was inferred from the bremsstrahlung source 
profile, which was computed from bremsstrahlung measurements taken at I ms 
intervals using 15 chords in a fan-shaped array. These chords were lying in the 
Z=O plane with at least one chord crossing the magnetic axis. The plasma was 
divided into nine volume elements for the analysis. In this configuration eat 
volume element was intersected by at least one chord, permitting us to solve for a 
histogram of the source, making no assumptions about the form of the source 
profile. Formally, we have sj(p) = 6, for pz < p < pr+ 1, where the p, are the volume 
element boundaries. Inserting this into Eq. (25) yields Glk = Al&. Then A, in 
Eq. (23 ) is the source strength in the jth volume element and j is summed over the 
volume elements. 

ORNL-DWG 86-3tlO FED 
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FIG. 8. Time-dependent density profile as inferred from chordal data during pellet mjec?ion into 
Doublet III. 
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After the histogram of the source was obtained, a 4-parameter fit was made using 

N(p)=N(1)+a,(l-p2)+a,e~[‘P-“3”“412, (27) 

where N is the plasma density and the a, were determined by a least-squares 
method. This represents a gaussian perturbation to a smooth density profile caused 
by the injection of a pellet. Figure 8 shows a detail of the results of the calculation. 
A pellet was injected at about 560 ms. The perturbation broadens slowly as the den- 
sity diffuses in both directions. 

Other forms for the lit were also tried. Reference [S] shows the histogram itself, 
i.e., the solution for the source profile evolution prior to obtaining a smooth lit. 
Although the chords in this example all lay in the midplane, in fact the orientation 
of the chords is arbitrary. The known geometry of the flux surfaces permits a simple 
solution for the source profile. 

6. CONCLUDING REMARKS 

Spectral representations are currently in use in the data analysis codes of all 
major tokamak experiments and in many MHD equilibrium codes and tokamak 
transport codes. The recent emphasis on stellarator experiments is motivating the 
extension of existing two-dimensional techniques to more general geometries. The 
algorithms described here are fuily three dimensional and can be adapted easily to 
alternate definitions of the flux coordinates. 

The authors will furnish a suite of FORTRAN subroutines containing these 
algorithms to interested parties. These routines have been tested and used in 
analysis of tokamak data from Doublet III and stellarator data from Heliotron E. 
Parts of the code are in use for transport simulation at Oak Ridge and Princeton. 
However, those people preferring to write or modify their own code should find 
that the algorithms are complete as described and that the programming effort 
required is not excessive. 
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